Speaker
Description
Pulsars are excellent astrophysical laboratories for studying physics under extreme conditions such as ultra-strong gravitational and magnetic fields. Admittedly, after five decades since their discovery, physical processes governing their emission mechanism remain poorly understood. PSR J0026-1955, which was independently discovered by the MWA (McSweeney et al. 2022), exhibits unusual sub-pulse drifting characteristics, a large (~70%) nulling fraction and mode changing. These properties make it an excellent addition to a small subset of promising targets for uncovering the intricacies of the pulsar emission mechanism. I will present analysis and results from follow-up observations of this pulsar made with the upgraded Giant Meterwave Radio Telescope (uGMRT) spanning the frequency range 300-750 MHz. Our analysis confirms quite a peculiar sub-pulse drifting behaviour seen in MWA data, including at least two distinct drifting modes, rapid changes between the modes and an evolution of drift rate within a mode. Further, our analysis also reveals the evolution toward a faster drift rate is usually followed by a null sequence, and there is also some evidence for memory across nulls. With all these intriguing properties, PSR J0026-1955 makes an ideal testbed for testing the carousel model of sparks and holds the potential to uncover the intricacies of pulsar emission physics.
Presentation length | 15 minutes |
---|